Continuous Integration and Delivery with
Cider-CIl at the ZHdK

CDDZ Meetup, April 2016

03 Dr. Thomas Schank

Version 1.0.0

http://github.com/drtom
https://twitter.com/DrTom21

ZHdK — Services — ITZ — Development

— Leiths / Madek - Team

ZHdK-Login

D igita | eS Are a | Z H d K Alle Funktionen nutzen und auf

Ideen, Projekte, Werke - kiinstlerisch und wissenschaftlich: Das

Gerate-Ausleihe und
Inventarverwaltungssystem

Inventar verwalten, Gegenstande reservieren und abholen
Medienarchiv der Kiinste ist die Plattform der ZHdK zum

mit Medien und Teilen von Inhalten.

haftlichen Arbeit

&

— ""__-_--_-___. = .'II ZH:IK-KataIug Alle anzeigen -
(1) C— =
g 8= ~E_/”A YT

Web-Applications, HTML, REST, ... T

Functional Reactive
Programming ©

Ruby on Rails, ClojureScript «s, Clojure s, - . rst
React ofs, PostgreSQL «fs, MySQL @, ... D€S1g B

O RLY? @ThePracticalDev

Continuous Integration / Delivery ©

Specification by Example , BDD, ... = Integration Testing

Unit tests Integration

o test a function, method, ... e complete usage cycles

e run withing a delimited e Span over processes and
environment services

e consistent, reliable e interaction

o fast (seconds ... minutes) « hard to set-up and tear-down

 inconsistent and error prone

o slow (... hours)

o &~ W Db

We will solve the following problems today:

. coordinate test scripts (e.g.: setup database, start services, run

tests, shutdown services, clean up),
manage false negatives - resilience,
improve reproducibility and transparency,
build test and deployment chains, and

get the integration tests to run fast (= 5 Minutes).

Caution

Much of this talk will touch this thing called Cider-CI.

It is an open source project. It is mostly but not entirely written by myself. There
IS and was a lot of input by my colleagues and in particular by Max!

| am biased, and | do consult and contract.

The primary focus of Cider-Cl was, is, and will be to
solve difficult problems in testing, continuous
integration, and delivery. It is not about creating
commercially successful product for the masses.

1. Coordinating Test Scripts

- W W .

|
l
]

W

.;"‘

.'._'.-

AR PN e A

aavd ~dvam

-

l
l
l
l
l
|

]

Maven test example:

mvh test

in Cider-Cl

scripts:
test:
name: Run a silly, failing test in bash

body: |
#!/usr/bin/env bash
set -eux
test a=Db

"Easy to formulate with any CI."

Test Suite

Traditional CI: one script = test suite
More modern: one script + before and after scripts

Cider-Cl: ...

Model Test from Madek-Datalayer

scripts:

configure-database SORT - CREbeRe
- body: bin/configure-database.rb

bundle-mri:

passed

create-database

exclusive_executor_resource: bundler_2.2
body: bundle

create-database:
body: bundle exec rake db:reset

start_when:
- script: bundle-mri

- script: configure-database

test:
body: bundle exec rspec $CIDER_CI_TASK_FILE
aborted start_when:
;passed. - script: create-database
failed
Skipped delete-database:

body: bundle exec rake db:drop
ignore_state: true
start_when:

delete-database

- script: test
states: [aborted, passed, failed, skipped]

"doable with any CI"

Feature Test from Madek-WebApp

passed

configure-database

passed |passed

create-database

passed

precompile-assets

aborted

passed
failed
skipped

delete-database

"hard"

Top Level Integration-Tests Madek

admin-webapp-bundle-mri webapp-bundle-mri

passed passed
\

i
admin—webapp—p@ create-database webapp-bundle-jruby

passed passed

admin-webapp-bundle-jruby

passed passed passed
/

(e

aborted
passed

delete-database

passed

executing

passed /passed executing passed

executing executing

/

admin-webapp-is-running

test
aborted aborted |aborted aborted aborted
passed passed |passed passed passed
failed failed | failed failed failed
skipped skipped |skipped Kipped skipped

i
shutdown-admin-webapp shutdown-reverse-proxy shutdown-webapp @

"very hard" - how do you mange change?

Integration-Tests Cider-Cl

passed

passed (configure-database e e

passed
3 —_— S

D sed (passed \ passed _passed passed passed /" passed passed
—_______‘___—__ D ~ 5 = ‘ —

passed

IONCS

passed | passed assed \ passed pi

assed

|

aborted ghorted \ aborted
passed . . passed | passed passed passed passed . . -
Tiled executing executing flked | Giled exeouting | o filed tiled executing executing passed lexecuting
skipped | skipped \ skipped skipped skipped skipped
aborted aborted ‘ . e .
Pr:]SJS:g Slart-avne ?’;ﬁj ui-i-unning api-is-running l notifier-is-running i repack-demo-repo dispatcher-is-running
skipped skipped
————— o S a———
aborted \{ ahorted
pf;sls:si passed passed P}:f]ﬁ passed |passed passed executing passed
skipped\\ skipped |
i aborted . = . e e e
o T e —————
skipped — | A %
borted aborted aborted ahorted aborted | aborted dhorted dhorted aborted
passed passed passed passed passed | passed passed passed
faled failed failed failed faled | failed faled failed
skipped skipped skipped skipped skipped ‘skipped skipped skipped

builder-shutdown

Demo: http://ci.zhdk.ch/cider-ci/ui/workspace/trials/c6¢c355ch-d2d8-4ba9-8acb-ccd7803e24bd

"Impossible"

http://ci.zhdk.ch/cider-ci/ui/workspace/trials/c6c355cb-d2d8-4ba9-8acb-ccd7803e24bd

Trial

script

script

script

script

Scripts in Cider-Ci

o actual unit of execution
e executed in the same context: Trial
o depend on each other

Coordination - Conclusion

A CIl system should provide means to manage complex
dependencies and execute them accordingly.

2. False Negatives and Resilience

Madek Project 2012

many new features, many new tests

o testing time 1 1/2 - 2 hours,
Increasing

o more and more failing tests: false
negatives

e 1/8 builds pass
o fixes helped only for a short time

= manual retrying of single tests / features

Probability of a False Negative for a whole Test-

Suite
Expression Example
probability false negative jo; 3%
single test
probability "success" ps =1 —ps 0.97
number of tests n 100

probability "success" whole Py =p! =1 —ps)" =5%
suite

— only one out of 20 will pass as it should

"succes" = true positive

Why retrying works so well

let kK number of independent retries per test
n

Py(n) = (1 - pp)" = Pi(n,k) = (1 — pf)

Expected successful outcome for n = 100 and ps = 0.03
k P!

1 5%
2 91%
3 99.7%

Recipe for Automatic Retries

1. Split up your test suite in tasks.

2. Run the tasks independently from each other.
3. Retry a task if it fails (e.g. 2 times).

4. Aggregate the results.

Divide and Conquer

Independent Tasks Benefits

« Executing different project configurations becomes very easy.
o Simulating defects becomes possible.
Independent tasks open an whole area of "things" you can now

test easily which were very hard or next to impossible to test
before.

Tasks & Trials in Cider-CI

setas) .)
- Tailed™ TS Trig) Trial

try —> (re-)try —»

set as
“passed”

A task is much like a blueprint. It is a container and state
aggregate for trials. It describes what and how to be executed. It
doesn't embody an execution itself.

file:///Users/thomas/Presentations/2016-04_CDDZ-Meetup/slides/trial-retry-2273ed85.svg

2. Resilience - Conclusion

e more tests = exponential increase of likeliness for false
negatives

« compensate by retrying single tests just a few times

Retrying tests is not (necessarily) an anti-pattern.

3. Reproducibility

Reproducibility is the
ability of an entire
experiment or study to be
duplicated, either by the
same researcher or by
someone else working
independently. (Wikipedia)

https://en.wikipedia.org/wiki/Reproducibility

Reproducibility & Project Configuration

We want to be able to reproduce test results at any time (later). The
test configuration must be resolvable from the source code!

(source code +~ test configuration) = run tests

Simple solution: put your test configuration together with your
source code!

Project Configuration in Cider-CI

Either top level project file cider-ci.yml, cider-ci. json,
.clder-ci.yml, or .cider-ci. json will do.

jobs:

1intro-demo:
task: test a = a

Cider-Cl Compact vs Canonical Notation

jobs:

intro-demo:
task: test a = a

normalization — Job Specification

key: intro-demo
name: intro-demo
empty_tasks_warning: true
context:
tasks:
Q' :
traits: {}
scripts:
main:

body: test a = a

Cider-Cl uses the Git and Git Only

You can start any job at any time!

You can retry any task at any time!

e reproducibility
 bisection (aka binary) search for bad commits

Supporting other SCMs would have compromised many features of Cider-Cl.

Totally Opinionated Git
Recommendations

« Sign your commits (definitely sign tags / releases)!

« Consider to use something like the git-reflow workflow: squash
and rebase! — linear history, traceabillity.

o Consider to use git in your review process: author is the git
author, the reviewer is the git committer.

« Consider to use git submodules.

https://github.com/reenhanced/gitreflo://github.com/reenhanced/gitreflow

Keep Your Project Configuration
Manageable with 1nclude

include:
path: cider-ci/job_meta.yml

path: cider-ci/jobs.yml
submodule: ['deploy']

path: cider-ci/job_integration-tests.yml
submodule: ['integration-tests']

path: cider-ci/job_specs-overview.yml
submodule: ['integration-tests']

You can share project configurations (or parts thereof) via git
submodules.

4. Building Test and Deployment
Pipelines

Jobs

A job contains and aggregates tasks.

'

Overview of the Entities

“ijji\ “ii“\ “ii“\ “i“‘\ “‘II‘I

setas) .)
- failed™ T Trig] Trial

Trial

-
&

— (re-)try —>|

set as
“passed”

Deploy Job Example

jobs:

deploy-to-test: deploy:
name: Deploy to test.madek
name: Deploy to test.madek

traits: [Ansible, MadekTestDeploy]

run_on:
- type: branch max_trials: 1
include-match: Amaster$
aggregate_state: satisfy-last
depends_on:
- type: job scripts:
job: integration-tests deploy:
states: [passed] timeout: 3 Hours
body: |
tasks: ... #!/usr/bin/env bash
set -eux
cd deploy
ansible-playbook \
-1 1inventories/zhdk/test \
play_setup-and-deploy.yml

Key properties: depends_on, run_on

Test and Deployment Chain for Madek

Madek

("\
[Deploy to “test”{)Deploy to “test8”]

Integration-Tests]

AN
= ==

_)
)

[Madek API
Code Checks
Madek Webapp)
[All Tests
<[Unit Tests
[Code Checks
\ Madek Datalayer

(November 2015 and slightly outdated)

5. Fast Tests

Recall our recipe for retries?

« Run the tasks independently from each
other.

If tasks are independent from each other they can be run in
parallel.

= We are done!

Time for a demo: ci.zhdk.ch

http://ci.zhdk.ch/cider-ci/ui/workspace

... almost ...

Getting Checkouts Fast

o clone/checkout Cider-CIl with submodules: 2 - 3 Minutes

—)

« keep a local cache of the repository

e nO network fetches if we have "the tree" already
o perform shallow, referenced checkouts

« do some more magic with submodules

= decentralized SCM = Git !

Caching

Simple solution: use persistent machines as executors.
= maven, ruby gems, ..., gets cached
= Trade speed against consistent state! = security issues!

= We use blessed executors for deploys.

Use RAM-Disks

(kudos Aarno)

« /tmp is a RAM-Disk
« Working Directories are on the RAM-Disk

Cider-Cl v4 default "PostgreSQL Trait" data-store on RAM-Disk

Closure - Cider-CI

Executors & Server

/ Cider-ClI

Server

Executors act fairly autonomous.

Client
(JSON-ROA)

Web-
browser

Web-
browser

—— http request —P»>

implicit: the Ul can access
all other server services for
status reports

Architecture

Cider-Cl 3 Architecture
Services and Interaction

/api

Jui

Relational Database

(Postgresql)

Git Repositories
(File System)

/docs

Filesystem
Generated HTML

Message
Broker

(AMQP /
Rabbitmq)

/dispatcher

/repositories

/storage

X-Sendfile

ﬁile System Storage |

_____ | - - — -
= HTTP Server / Reverse Proxy
Apache (80,443 / -) production,
"""" amgp r-cccttct resp Clojure service (8888/7888) development

/storage

Copyright 2013 - 2015 Thomas Schank
Update 2015-07-16

Hardware

ci.zhdk.ch/cider-ci/ui/admin/executors

http://ci.zhdk.ch/cider-ci/ui/admin/executors

Cider-Cl is an Expert System

it is about making the hard possible, and not not about making
the simple easy”

o for professionals

e NO cCOMpromises

« steep learning curve
« high rewards

— swiss army knife for devops

*see "Simple Made Easy" by Rich Hickey

Cider-Cl History & Future

e 2013 v1: Ruby on Rails on Torquebox (JBoss)

e 2014 v2: RoR + Clojure (Torquebox / Immutant)
e 2015 v3: Micro-Service Architecture; GA

e June 2016 v4:

simplify deployment, fewer system dependencies
o executors can perform self-upgrades
o executor: Java8 + Git
o server: Java8 + PostgreSQL + RabbitMQ + Git
o Ansible: Debian 8, Ubuntu 16.04

additional state: defective

rename configuration directives, change defaults
configuration validator

Want to try Cider-CI?

On Debian jessie:

apt-get update && apt-get install curl -y

curl https://raw.githubusercontent.com/cider-ci/cider-ci_deploy/v4/bin/quick-1n
stall.sh | bash

Resources & documentation and more: cider-ci.info

Consulting, support: Thomas.Schank@ AlgoCon.ch.

THANK YOU !

http://cider-ci.info/
mailto:Thomas.Schank@AlgoCon.ch

