
Continuous Integration and Delivery with
Cider-CI at the ZHdK

CDDZ Meetup, April 2016

 Dr. Thomas Schank
Version 1.0.0

http://github.com/drtom
https://twitter.com/DrTom21

ZHdK → Services → ITZ → Development

→ Leihs / Madek - Team

Web-Applications, HTML, REST, …

Functional Reactive
Programming

Ruby on Rails, ClojureScript , Clojure ,
React , PostgreSQL , MySQL , …

Continuous Integration / Delivery
Specification by Example , BDD, … ⇒ Integration Testing

Unit tests

test a function, method, …

run withing a delimited
environment

consistent, reliable

fast (seconds … minutes)

Integration

complete usage cycles

span over processes and
services

interaction

hard to set-up and tear-down

inconsistent and error prone

slow (… hours)

We will solve the following problems today:

1. coordinate test scripts (e.g.: setup database, start services, run
tests, shutdown services, clean up),

2. manage false negatives - resilience,

3. improve reproducibility and transparency,

4. build test and deployment chains, and

5. get the integration tests to run fast (≤ 5 Minutes).

Caution
Much of this talk will touch this thing called Cider-CI.

It is an open source project. It is mostly but not entirely written by myself. There
is and was a lot of input by my colleagues and in particular by Max!

I am biased, and I do consult and contract.

The primary focus of Cider-CI was, is, and will be to
solve difficult problems in testing, continuous
integration, and delivery. It is not about creating
commercially successful product for the masses.

1. Coordinating Test Scripts

Maven test example:

in Cider-CI

"Easy to formulate with any CI."

mvn test

...
 scripts:
 test:
 name: Run a silly, failing test in bash
 body: |
 #!/usr/bin/env bash
 set -eux
 test a = b

Test Suite
Traditional CI: one script ≈ test suite

More modern: one script + before and after scripts

Cider-CI: …

Model Test from Madek-Datalayer

"doable with any CI"

scripts:

 configure-database:
 body: bin/configure-database.rb

 bundle-mri:
 exclusive_executor_resource: bundler_2.2
 body: bundle

 create-database:
 body: bundle exec rake db:reset
 start_when:
 - script: bundle-mri
 - script: configure-database

 test:
 body: bundle exec rspec $CIDER_CI_TASK_FILE
 start_when:
 - script: create-database

 delete-database:
 body: bundle exec rake db:drop
 ignore_state: true
 start_when:
 - script: test
 states: [aborted, passed, failed, skipped]

Feature Test from Madek-WebApp

"hard"

Top Level Integration-Tests Madek

"very hard" - how do you mange change?

Integration-Tests Cider-CI

Demo:

"impossible"
http://ci.zhdk.ch/cider-ci/ui/workspace/trials/c6c355cb-d2d8-4ba9-8acb-ccd7803e24bd

http://ci.zhdk.ch/cider-ci/ui/workspace/trials/c6c355cb-d2d8-4ba9-8acb-ccd7803e24bd

Trial

script

script

script

script

Scripts in Cider-CI
actual unit of execution
executed in the same context: Trial
depend on each other

Coordination - Conclusion
A CI system should provide means to manage complex

dependencies and execute them accordingly.

2. False Negatives and Resilience

⇒ manual retrying of single tests / features

Madek Project 2012
many new features, many new tests

testing time 1 1/2 - 2 hours,
increasing
more and more failing tests: false
negatives
1/8 builds pass
fixes helped only for a short time

Probability of a False Negative for a whole Test-
Suite

 Expression Example
probability false negative
single test

3%

probability "success" 0.97
number of tests 100
probability "success" whole
suite

→ only one out of 20 will pass as it should

"succes" = true positive

pf

= 1 −ps pf
n

= =Ps pn
s (1 −)pf

n ≈ 5%

Why retrying works so well
let number of independent retries per test

Expected successful outcome for and

k
1 5%
2 91%
3 99.7%

k

(n) = (1 −Ps pf)n ⇒ (n, k) =P′
s (1 −)pk

f
n

n = 100 = 0.03pf
P′
s

Recipe for Automatic Retries
1. Split up your test suite in tasks.
2. Run the tasks independently from each other.
3. Retry a task if it fails (e.g. 2 times).
4. Aggregate the results.

Divide and Conquer

Independent Tasks Benefits
Executing different project configurations becomes very easy.

Simulating defects becomes possible.

Independent tasks open an whole area of "things" you can now
test easily which were very hard or next to impossible to test

before.

Tasks & Trials in Cider-CI

A task is much like a blueprint. It is a container and state
aggregate for trials. It describes what and how to be executed. It

doesn't embody an execution itself.

Task

…
try

Trial

…
(fail)

(re-)try

Trial

…
(pass)

set as
“failed”

set as
“passed”

file:///Users/thomas/Presentations/2016-04_CDDZ-Meetup/slides/trial-retry-2273ed85.svg

2. Resilience - Conclusion
more tests → exponential increase of likeliness for false
negatives

compensate by retrying single tests just a few times

Retrying tests is not (necessarily) an anti-pattern.

3. Reproducibility

Reproducibility is the
ability of an entire

experiment or study to be
duplicated, either by the
same researcher or by
someone else working

independently. ()Wikipedia

https://en.wikipedia.org/wiki/Reproducibility

Reproducibility & Project Configuration
We want to be able to reproduce test results at any time (later). The

test configuration must be resolvable from the source code!

(source code ↦ test configuration) ⇒ run tests

Simple solution: put your test configuration together with your
source code!

Project Configuration in Cider-CI
Either top level project file cider-ci.yml, cider-ci.json,

.cider-ci.yml, or .cider-ci.json will do.
jobs:
 intro-demo:
 task: test a = a

Cider-CI Compact vs Canonical Notation

normalization → Job Specification

jobs:
 intro-demo:
 task: test a = a

key: intro-demo
name: intro-demo
empty_tasks_warning: true
context:
 tasks:
 '0':
 traits: {}
 scripts:
 main:
 body: test a = a

Cider-CI uses the Git and Git Only
You can start any job at any time!

You can retry any task at any time!

reproducibility

bisection (aka binary) search for bad commits

….

Supporting other SCMs would have compromised many features of Cider-CI.

Totally Opinionated Git
Recommendations

Sign your commits (definitely sign tags / releases)!

Consider to use something like the workflow: squash
and rebase! → linear history, traceability.

Consider to use git in your review process: author is the git
author, the reviewer is the git committer.

Consider to use git submodules.

git-reflow

https://github.com/reenhanced/gitreflo://github.com/reenhanced/gitreflow

Keep Your Project Configuration
Manageable with include

You can share project configurations (or parts thereof) via git
submodules.

include:

 - path: cider-ci/job_meta.yml

 - path: cider-ci/jobs.yml
 submodule: ['deploy']

 - path: cider-ci/job_integration-tests.yml
 submodule: ['integration-tests']

 - path: cider-ci/job_specs-overview.yml
 submodule: ['integration-tests']

4. Building Test and Deployment
Pipelines

Jobs
A job contains and aggregates tasks.

Job
Task Task Task Task …

Overview of the Entities

Job
Task Task Task Task …

Trial

script

script

script

script

Task

…
try

Trial

…
(fail)

(re-)try

Trial

…
(pass)

set as
“failed”

set as
“passed”

Deploy Job Example

Key properties: depends_on, run_on

jobs:

 deploy-to-test:

 name: Deploy to test.madek

 run_on:
 - type: branch
 include-match: ^master$

 depends_on:
 - type: job
 job: integration-tests
 states: [passed]

 tasks: ...

...

deploy:
 name: Deploy to test.madek

 traits: [Ansible, MadekTestDeploy]

 max_trials: 1

 aggregate_state: satisfy-last

 scripts:
 deploy:
 timeout: 3 Hours
 body: |
 #!/usr/bin/env bash
 set -eux
 cd deploy
 ansible-playbook \
 -i inventories/zhdk/test \
 play_setup-and-deploy.yml

Test and Deployment Chain for Madek

Madek Datalayer

Madek

Integration-Tests

Deploy to “test”

Madek Webapp

Code Checks
Madek API

Tests
Feature Tests

All Tests

Unit Tests

Code Checks

All Tests

Unit Tests

Deploy to “test8”

(November 2015 and slightly outdated)

5. Fast Tests

30

60

1545

60

30

1545

5

10

20

2535

40

50

55

MADE IN ITALY

Recall our recipe for retries?

If tasks are independent from each other they can be run in
parallel.

⇒ We are done!
Time for a demo:

Run the tasks independently from each
other.

ci.zhdk.ch

http://ci.zhdk.ch/cider-ci/ui/workspace

… almost …

Getting Checkouts Fast
clone/checkout Cider-CI with submodules: 2 - 3 Minutes

→

keep a local cache of the repository
no network fetches if we have "the tree" already
perform shallow, referenced checkouts
do some more magic with submodules

⇒ decentralized SCM ⇒ Git !

Caching
Simple solution: use persistent machines as executors.

⇒ maven, ruby gems, …, gets cached

⇒ Trade speed against consistent state! ⇒ security issues!

⇒ We use blessed executors for deploys.

Use RAM-Disks
(kudos Aarno)

/tmp is a RAM-Disk
Working Directories are on the RAM-Disk

Cider-CI v4 default "PostgreSQL Trait" data-store on RAM-Disk

Closure - Cider-CI

Executors & Server

Executors act fairly autonomous.

Architecture

Cider-CI 3 Architecture
Services and Interaction

Copyright 2013 - 2015 Thomas Schank
Update 2015-07-16

Dispatcher
(Clojure)

(8882/7882)

User-Interface
(Ruby on Rails)

(8880/-)

http request sql

amqp

Git Repositories
(File System)

HTTP Server / Reverse Proxy
Apache (80,443 / -) production,

resp Clojure service (8888/7888) development

/re
po

sit
or

ie
s

Builder
(Clojure)

(8884/7884)

Web-
browser

...

Web-
browser

/u
i

/s
to

ra
ge Storage

(Clojure)
(8886/7886) /s

to
ra

ge

Repository
(Clojure)

(8881/7881)

/d
isp

at
ch

er

File System Storage

X-Sendfile

API
(Clojure)

(8885/7885)

/a
pi

Client
(JSON-ROA)

Message
Broker
(AMQP /

Rabbitmq)

Relational Database
(Postgresql)

Stored-Procedures
(PL/pgSQL)

…

/d
oc

s Filesystem
Generated HTML

Core Service /
Component

(http(s)-port / nrepl-port)

Executor
(Clojure)

(80 | 8883 ,
443 | 8443 /

7883)

implicit: the UI can access
all other server services for

status reports

Notifier
(Clojure)

(8887/7887)

Executor
(Clojure)

(8883 | 80,
8443 | 443 /

7883)

Hardware

ci.zhdk.ch/cider-ci/ui/admin/executors

http://ci.zhdk.ch/cider-ci/ui/admin/executors

Cider-CI is an Expert System
it is about making the hard possible, and not not about making

the simple easy*

for professionals
no compromises
steep learning curve
high rewards

→ swiss army knife for devops

*see "Simple Made Easy" by Rich Hickey

Cider-CI History & Future

2013 v1: Ruby on Rails on Torquebox (JBoss)

2014 v2: RoR + Clojure (Torquebox / Immutant)

2015 v3: Micro-Service Architecture; GA

June 2016 v4:

simplify deployment, fewer system dependencies
executors can perform self-upgrades
executor: Java8 + Git
server: Java8 + PostgreSQL + RabbitMQ + Git
Ansible: Debian 8, Ubuntu 16.04

additional state: defective
rename configuration directives, change defaults
configuration validator

Want to try Cider-CI?
On Debian jessie:

Resources & documentation and more:

Consulting, support: .

THANK YOU !

apt-get update && apt-get install curl -y
curl https://raw.githubusercontent.com/cider-ci/cider-ci_deploy/v4/bin/quick-in
stall.sh | bash

cider-ci.info

Thomas.Schank@AlgoCon.ch

http://cider-ci.info/
mailto:Thomas.Schank@AlgoCon.ch

